Final answer:
To find the component form of the vector -2u - 3v, multiply each component of u and v by their respective coefficients and then add the results. The resultant vector is <-8, 18>.
Step-by-step explanation:
To find the component form of the vector -2u - 3v, we need to multiply each component of vectors u and v by their respective coefficients and then add the results.
Given u = <-1, 3> and v = <2, 4>, we can calculate -2u = <-2, 6> and -3v = <-6, -12>.
Finally, we add -2u and -3v component-wise to get the component form of the resultant vector: -2u - 3v = <-2, 6> - <6, -12> = < -2 - 6 , 6 - (-12) > = < -8, 18 >.