Explanation:
We got
![(f(x + h) - f(x))/(h)](https://img.qammunity.org/2023/formulas/mathematics/college/sz7di9ebj1w6q2fz6jkhzvtracq1b9m5m2.png)
The function here is
9x^2 so we got now
![\frac{9(x + h) {}^(2) - 9 {x}^(2) }{h}](https://img.qammunity.org/2023/formulas/mathematics/college/aozqxxxndhptt3a85ff0b8nheka3alsm33.png)
![\frac{9( {x}^(2) + 2hx + {h}^(2) - 9 {x}^(2) }{h}](https://img.qammunity.org/2023/formulas/mathematics/college/wyuug2991kutz6ftbvyq1g88ulu1qb4phw.png)
![\frac{9 {x}^(2) + 18hx + 9 {h}^(2) - 9 {x}^(2) }{h}](https://img.qammunity.org/2023/formulas/mathematics/college/rh90t1pohkguqixffb3zvwwu3wy1wokm2v.png)
Cancel out terms.
![\frac{18hx + 9h {}^(2) }{h}](https://img.qammunity.org/2023/formulas/mathematics/college/zarr38zj17b8cv6e2qkzpe2t43zpycnh3z.png)
If we direct subsitue we get
![(0)/(0)](https://img.qammunity.org/2023/formulas/mathematics/college/altwn32eeaj092sbyztkzbr7qe0gc003yy.png)
which is intermidate form in calculus so now, let try to find another way to evaluate this, we can factor out 9h
![(9h(2x + h)/(h)](https://img.qammunity.org/2023/formulas/mathematics/college/x35gy74x9rjop43o60bzqfl1xgjs37tjqp.png)
Cancel out h
![9(2x + h)](https://img.qammunity.org/2023/formulas/mathematics/college/52ckl32pkctgh6z1pducvm61d3jvfavfs7.png)
Subsitue 0 for h.
![9(2x + 0)](https://img.qammunity.org/2023/formulas/mathematics/college/s1vfdljmom8rt215ysv53wnn9jreah78za.png)
![9(2x)](https://img.qammunity.org/2023/formulas/mathematics/college/1gizfjeon3k70t41t3k2ykci8fctqjqozf.png)
![18x](https://img.qammunity.org/2023/formulas/mathematics/college/hovormpzhvp6aqxuejifozn3ny4jtspc8k.png)
The answer here is 18x.
Congrats. We just found the derivative of a function.