Final answer:
To find the point necessary for 0.96 of the responses to be correct, we solve the equation 0.96 = 0.9x + 0.7.
The approximate number of trials required is 0.289.
Step-by-step explanation:
The given model P = 0.9x + 0.7 represents a learning curve, where P is the proportion of correct responses after x trials.
To find the point necessary for 0.96 of the responses to be correct, we need to solve for x in the equation:
0.96 = 0.9x + 0.7.
- Subtracting 0.7 from both sides, we get 0.96 - 0.7 = 0.9x.
- Simplifying, we have 0.26 = 0.9x.
- Dividing both sides by 0.9, we find x = 0.26/0.9 = 0.289.
Therefore, approximately 0.289 trials are necessary for 0.96 of the responses to be correct.