220k views
18 votes
(1+tan^2 A)cot A/cosec^2 A= tanA​

1 Answer

4 votes

Answer:

see explanation

Explanation:

Using the trigonometric identities

1 + tan²A = sec²A , secA =
(1)/(cosA), cosecA =
(1)/(sinA) , cotA =
(cosA)/(sinA) , tanA =
(sinA)/(cosA)

Consider the left side


((1+tan^2A)cotA)/(cosec^2A)

=
(sec^2AcotA)/(cosec^2A)

=
((1)/(cos^2A)((cosA)/(sinA)) )/(cosec^2A)

=
((1)/(cosAsinA) )/((1)/(sin^2A) )

=
(1)/(cosAsinA) × sin²A

=
(sinA)/(cosA)

= tanA = right side , thus proven

User Rubendob
by
4.6k points