167k views
16 votes
How to differentiate this​

How to differentiate this​-example-1

2 Answers

5 votes

Answer:

18

Explanation:

Using the product rule

Given

y = f(x). g(x) , then


(dy)/(dx) = f(x). g'(x) + g(x). f'(x)

Here

f(x) =
(2x+3)^(5) ⇒ f'(x) = 5
(2x+3)^(4) ×
(d)/(dx) (2x + 3) , then

f'(x) = 10
(2x+3)^(4)

g(x) =
(x+2)^(8) ⇒ g'(x) = 8
(x+2)^(7) ×
(d)/(dx) (x + 2) , then

g'(x) = 8
(x+2)^(7)

Thus


(dy)/(dx) =
(2x+3)^(5) . 8
(x+2)^(7) +
(x+2)^(8) . 10
(2x+3)^(4) ← factor expression

=
(2x+3)^(4)
(x+2)^(7) [ 8(2x + 3) + 10(x + 2)

=
(2x+3)^(4)
(x+2)^(7) (16x + 24 + 10x + 20)

=
(2x+3)^(4)
(x+2)^(7) (26x + 44)

Thus


(dy)/(dx) ( x = - 1)

=
1^(4) ×
1^(7) × 18

= 1 × 1 × 18

= 18

User Dnyan Waychal
by
3.3k points
8 votes

Explanation:

check it.. i have solved this for you

How to differentiate this​-example-1
User Trevorhinesley
by
3.3k points