121k views
10 votes
1.

Use the Rydberg equation to calculate the energy (in J) and then find the wavelength
in (nm) for the following transitions.
-18
AE = 2.179x10
a.
3-2.

1. Use the Rydberg equation to calculate the energy (in J) and then find the wavelength-example-1
User Bancer
by
3.9k points

1 Answer

6 votes

Answer:

Approximately
3.03* 10^(-19)\; \rm J, which corresponds to a wavelength of approximately
6.56 * 10^(2)\; \rm nm in vacuum.

Step-by-step explanation:

When the electron of a hydrogen atom transits from energy level
n_1 to
n_2, the energy change would be:


\displaystyle \Delta E \approx 2.179 * 10^(-18)\; {\rm J} \, \left(\frac{1}{{(n_1)}^(2)} - \frac{1}{{(n_2)}^(2)}\right).

For the transition from
n_1 =3 to
n_2 = 2:


\begin{aligned}\Delta E &\approx 2.179 * 10^(-18)\; {\rm J} \, \left(\frac{1}{{(n_1)}^(2)} - \frac{1}{{(n_2)}^(2)}\right)\\ &= 2.179 * 10^(-18)\; {\rm J} \, \left(\frac{1}{{3}^(2)} - \frac{1}{{2}^(2)}\right) \\ &\approx -3.02639 * 10^(-19) \; \rm J \\ &\approx -3.03* 10^(-19)\; \rm J\end{aligned}.

The value of
\Delta E is negative because energy is released during this transition.

Look up Planck's Constant (for finding frequency from energy) and the speed of light in vacuum (for finding wavelength from frequency.)

  • Planck's Constant:
    h \approx 6.62607 * 10^(-34) \; \rm J \cdot s^(-1).
  • Speed of light in vacuum:
    c \approx 2.99792 * 10^(8)\; \rm m \cdot s^(-1).

Calculate the frequency
f of photons from this transition using the Planck-Einstein relation:


E = h \cdot f.

Therefore:


\begin{aligned}f &= (E)/(h)\end{aligned}.

Calculate the wavelength
\lambda of these photos in vacuum:


\begin{aligned}\lambda &= (c)/(f) \\ &= (c)/( E/ h) \\ &= (h \cdot c)/(E) \\ &\approx (6.62607 * 10^(-34)\; \rm J \cdot s * 2.99792 * 10^(8)\; \rm m \cdot s^(-1))/(3.02639 * 10^(-19)\; \rm J) \\ &\approx 6.65 * 10^(-7)\; \rm m \\ &= 6.65 * 10^(-7)\; \rm m * (10^(9)\;\rm nm)/(1\; \rm m) \\ &= 6.65 * 10^(2)\; \rm nm\end{aligned}.

User Ossi
by
4.9k points