111k views
4 votes
Suppose that Athena takes an English, philosophy, mathematics, and elective course during the semester. The English course is worth 3 units, the philosophy course is worth 3 units, the mathematics course is worth 4 units, and the elective course is worth 3 units. The grades she earns in the courses are A- in English, B in philosophy, B+ in mathematics, and A in the elective. Please calculate her GPA for these four courses, rounded to the hundredths space (two decimal places).

User K L
by
8.4k points

1 Answer

0 votes

Final answer:

To calculate Athena's GPA, we assigned each grade a GPA value and calculated the products for each course. The total GPA units (45.3) were divided by the total course units (13), resulting in an overall GPA of approximately 3.48.

Step-by-step explanation:

To calculate Athena's Grade Point Average (GPA) for her courses, we need to assign each grade its corresponding GPA value:

  • A = 4.0
  • A- = 3.7
  • B+ = 3.3
  • B = 3.0

For each course, we multiply the GPA value by the course unit, and then we sum these totals and divide by the total number of units to get the average GPA.

  1. English: 3 units x 3.7 (A-) = 11.1
  2. Philosophy: 3 units x 3.0 (B) = 9.0
  3. Mathematics: 4 units x 3.3 (B+) = 13.2
  4. Elective: 3 units x 4.0 (A) = 12.0

To find the overall GPA, add these totals and then divide by the total units:

Total GPA units = 11.1 + 9.0 + 13.2 + 12.0

= 45.3

Total course units = 3 + 3 + 4 + 3

= 13 units

Overall GPA = Total GPA units / Total course units

= 45.3 / 13

≈ 3.48

Athena's GPA for these courses, rounded to the hundredths space, is 3.48.

User Pradeep Anchan
by
6.6k points