In the given right-angled triangle with a height n, hypotenuse m, and base
, where the angle between the height and hypotenuse is 60 degrees, the values of n and m are found to be n = 6 and
. The correct option is (e)

In the given right-angled triangle with a height n, hypotenuse m, and base
, the angle between the height and hypotenuse is given as 60 degrees. We can use trigonometric ratios to find the values of n and m.
The trigonometric ratio for the sine of an angle in a right-angled triangle is given by:
![\[ \sin(\theta) = \frac{\text{Opposite}}{\text{Hypotenuse}} \]](https://img.qammunity.org/2024/formulas/mathematics/college/wufuyzaacndwj4qdggaojagt52lsyas4tz.png)
In this case, for the angle of 60 degrees:
![\[ \sin(60^\circ) = (n)/(m) \]](https://img.qammunity.org/2024/formulas/mathematics/college/ixvbamup5l97t872yovse9dbm65bzdz25p.png)
Since
, we have:
![\[ (√(3))/(2) = (n)/(m) \]](https://img.qammunity.org/2024/formulas/mathematics/college/q3sl64k2h7ws1sl7xb9yzovehxljcd206j.png)
Solving for n, we get:
![\[ n = (m√(3))/(2) \]](https://img.qammunity.org/2024/formulas/mathematics/college/vigzj1h4imcaio6w4au838eyn2tenp06zf.png)
Now, using the Pythagorean theorem, which states that in a right-angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides:
![\[ m^2 = n^2 + (2√(3))^2 \]](https://img.qammunity.org/2024/formulas/mathematics/college/xnwmpo0njqr7gh8k4symojbikdlvlklci4.png)
Substitute the expression for n:
![\[ m^2 = \left((m√(3))/(2)\right)^2 + (2√(3))^2 \]](https://img.qammunity.org/2024/formulas/mathematics/college/etllee9hx2mivrd1cdwuc8m4dqrlbo3zjm.png)
Solve for m:
![\[ m^2 = (3m^2)/(4) + 12 \]](https://img.qammunity.org/2024/formulas/mathematics/college/c1sch6xbpii8b0zc0l29jhtvpzv7evqaro.png)
Combine like terms:
![\[ (m^2)/(4) = 12 \]](https://img.qammunity.org/2024/formulas/mathematics/college/qsqm2nx1kmemektzenau6jhiz4bz55hr0x.png)
Multiply both sides by 4:
![\[ m^2 = 48 \]](https://img.qammunity.org/2024/formulas/mathematics/college/z2uepil782y67qwdbptldyixidrlq1xxnt.png)
![\[ m = √(48) = 4√(3) \]](https://img.qammunity.org/2024/formulas/mathematics/college/9gpm9c66sgp4m6huolu5coouhcipspkljg.png)
Now that we have m, we can find n:
![\[ n = (m√(3))/(2) = (4√(3) * √(3))/(2) = 2 * 3 = 6 \]](https://img.qammunity.org/2024/formulas/mathematics/college/rv73mdzvjt0q5awpmviphwy5hkm92d8nwt.png)
So, the correct values are:
n = 6
![\[ m = 4√(3) \]](https://img.qammunity.org/2024/formulas/mathematics/college/8l2wb1e71n1fxpk13qixpu2wo9ua9uc59o.png)
Now, let's find the base:
![\[ \text{Base} = 2√(3) \]](https://img.qammunity.org/2024/formulas/mathematics/college/oqhltypfgsm2td7w013i9isd8usmlc6cuj.png)
Now, check the given options:
a. 1 (Not correct)
b. 2 (Not correct)
c. 4 (Not correct)
d.
(Not correct)
e.
(Correct)
Therefore, the correct answer is (e)
.