169k views
12 votes
How do I differentiate this?​

How do I differentiate this?​-example-1

1 Answer

10 votes

Answer:


(8)/(\left(-x+2\right)^2) &
x = 1, x = 3

Explanation:

I'm sure you are familiar with the product rule,

If y = u*v => dy/dx = u * dv/dx + v * dy/dx <----- product rule

In this case:


u=3x+2,\:v=\left(2-x\right)^(-1),\\=>(d)/(dx)\left(3x+2\right)\left(2-x\right)^(-1)+(d)/(dx)\left(\left(2-x\right)^(-1)\right)\left(3x+2\right)

Now remember the sum rule:


(d)/(dx)\left(3x+2\right) = (d)/(dx)\left(3x\right)+(d)/(dx)\left(2\right),\\(d)/(dx)\left(3x\right) = 3,\\(d)/(dx)\left(2\right) = 0\\(d)/(dx)\left(3x+2\right) = 3

For this second bit we apply the chain rule:


(d)/(dx)\left(\left(2-x\right)^(-1)\right) = -(1)/(\left(2-x\right)^2)(d)/(dx)\left(2-x\right),\\(d)/(dx)\left(2-x\right) = -1,\\\\=> -(1)/(\left(2-x\right)^2)\left(-1\right)\\=> (1)/(\left(2-x\right)^2)

If we substitute these values back into the expression...
(d)/(dx)\left(3x+2\right)\left(2-x\right)^(-1)+(d)/(dx)\left(\left(2-x\right)^(-1)\right)\left(3x+2\right)

...we get the following:


3\left(2-x\right)^(-1)+(1)/(\left(2-x\right)^2)\left(3x+2\right)

The rest is just pure simplification:


3\left(2-x\right)^(-1)+(1)/(\left(2-x\right)^2)\left(3x+2\right)\\= (3)/(-x+2)+(3x+2)/(\left(-x+2\right)^2)\\= (3\left(-x+2\right))/(\left(-x+2\right)^2)+(3x+2)/(\left(-x+2\right)^2)\\\\= (3\left(-x+2\right)+3x+2)/(\left(-x+2\right)^2)\\\\= (8)/(\left(-x+2\right)^2)

Now let's equate this to equal 8 for the second bit and solve for x:


(8)/(\left(-x+2\right)^2)=8,\\(8)/(\left(-x+2\right)^2)\left(-x+2\right)^2=8\left(-x+2\right)^2,\\8=8\left(-x+2\right)^2,\\\left(-x+2\right)^2=1,\\x = 1, x = 3

User SpoonMeiser
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories