In polar coordinates, the equation
becomes
.
To convert the rectangular equation
to polar coordinates, we use the relationships
. Substitute these into the given equation:
![\[(xy)^2 = 9\]\[(r \cos(t) \cdot r \sin(t))^2 = 9\]\[r^2 \cos^2(t) \sin^2(t) = 9\]](https://img.qammunity.org/2024/formulas/mathematics/college/sfs8c4ubpkeh7nry74k3ckf3e3mla1qf7p.png)
Now, use the trigonometric identity
:
![\[r^2 \cdot (1)/(4) \sin^2(2t) = 9\]](https://img.qammunity.org/2024/formulas/mathematics/college/snhccruxeg63nfrsayuxf3qh3e3xb9hd43.png)
Multiply both sides by 4 to simplify:
![\[r^2 \sin^2(2t) = 36\]](https://img.qammunity.org/2024/formulas/mathematics/college/xyljrk8w67fdcokfforjgdiulhhjzseq7q.png)
Now, using the double-angle identity
:
![\[r^2 \cdot (1)/(2)(1 - \cos(4t)) = 36\]](https://img.qammunity.org/2024/formulas/mathematics/college/mcxzrabcm7rlj5phinaj8wqpzo8ta4phak.png)
Multiply both sides by 2 to clear the fraction:
![\[r^2 (1 - \cos(4t)) = 72\]](https://img.qammunity.org/2024/formulas/mathematics/college/9jr9pizmrdbu7o6d2q6mtl9qawb5p2fz5o.png)
Now, rearrange the equation to get it in the form
:
![\[r^2 - r^2 \cos(4t) = 72\]\[r^2 (1 - \cos(4t)) = 72\]](https://img.qammunity.org/2024/formulas/mathematics/college/lmzmu8cy9214vtfonfhiwz272t3bsyxhzq.png)
Therefore, the polar form of the given equation is
.