In triangle ABC, where angles A, B, and C are represented by expressions in terms of x, the solution is x = 35. The sum of the interior angles (A, B, and C) in a triangle equals 180 degrees.
In a triangle, the sum of all three interior angles is always equal to 180 degrees. Therefore, in triangle ABC:
![\[ \text{Angle A} + \text{Angle B} + \text{Angle C} = 180^\circ \]](https://img.qammunity.org/2024/formulas/mathematics/college/3lzie1afc8q7syu9i5tu4x2p4m2d1db37w.png)
Given:
![\[ \text{Angle A} = 3x + 13 \]](https://img.qammunity.org/2024/formulas/mathematics/college/rrwmc21x7g1cije46aiw6woorgrfbe1zcv.png)
![\[ \text{Angle B} = x - 8 \]](https://img.qammunity.org/2024/formulas/mathematics/college/cn31kiz2kqalxwrvprb8egd8h4kyjpncfi.png)
![\[ \text{Angle C} = x \]](https://img.qammunity.org/2024/formulas/mathematics/college/l1lv13p8sx7s0sal0eqx9c3v17g9lpagwg.png)
Substitute these values into the equation:
![\[ (3x + 13) + (x - 8) + x = 180 \]](https://img.qammunity.org/2024/formulas/mathematics/college/vloah8reu8eeafk48u87crtv2v5lbtmpay.png)
Combine like terms:
5x + 5 = 180
Subtract 5 from both sides:
5x = 175
Divide by 5:
x = 35
Therefore, x = 35.