Answer:
Step-by-step explanation:
Given:
r₁ = 0.2 cm = 0.002 m
σ = 75·10⁻³ N·m
______________
ΔE - ?
The volume of one small drop:
V₁ = (4/3)·π·r³ = (4/3)·3.14·0.002³ ≈ 3.35·10⁻⁸ m³
Large drop volume:
V = 2·V₁ = 2·3.35·10⁻⁸ = 6.70·10⁻⁸ m³
V = (4/3)·π·R³
Big drop radius:
R = ∛ (3·V / (4·π)) = ∛ (3·6.70·10⁻⁸ / (4·3.14) ) ≈ 0.0025 m
Surface area of a large drop:
S = 4·π·R² = 4·3.14·0.0025² ≈ 78.5·10⁻⁶ m²
Surface area of a small drop:
S₁ = 4·π·r₁² = 4·3.14·0.002² = 50.2·10⁻⁶ m²
S₂ = 2·S₁ = 100.4·10⁻⁶ m²
ΔS = S₂ - S₁ = (100.4 - 78.5)·10⁻⁶ m² = 21.9·10⁻⁶ m²
Energy change:
ΔE = σ·ΔS = 75·10⁻³·21.9·10⁻⁶ ≈ 1.64·10⁻⁶ J