74.2k views
4 votes
What is the reduced radical form of:


((x^(1/2)*x^(5/12) )^4)/(x^(2/3))

1 Answer

2 votes


\begin{array}{llll} \hspace{5em}\textit{negative exponents} \\\\ a^(-n) \implies \cfrac{1}{a^n} ~\hspace{4.5em} a^n\implies \cfrac{1}{a^(-n)} \end{array} ~\hfill~ \begin{array}{llll} \textit{rational exponents} \\\\ a^{( n)/( m)} \implies \sqrt[ m]{a^ n} \end{array} \\\\[-0.35em] ~\dotfill


\cfrac{(x^{(1)/(2)}x^{(5)/(12)})^4}{x^{(2)/(3)}}\implies \cfrac{(x^{(1)/(2)+(5)/(12)})^4}{x^{(2)/(3)}}\implies \cfrac{(x^{(11)/(12)})^4}{x^{(2)/(3)}} \implies \cfrac{x^{(11)/(12)\cdot 4}}{x^{(2)/(3)}}\implies \cfrac{x^{(11)/(3)}}{x^{(2)/(3)}} \\\\\\ x^{(11)/(3)}\cdot x^{-(2)/(3)}\implies x^{(11)/(3)-(2)/(3)}\implies x^{(9)/(3)}\implies {\Large \begin{array}{llll} x^3 \end{array}}

User Chuck Lowery
by
7.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories