The probability that both of the bulbs will fail within 5 hours is 0.287.
How to find probability?
To find the probability that both bulbs will fail within 5 hours, find the joint probability density function and then integrate it over the given range.
The probability density function (pdf) for the lifetime of a single bulb is given by:
![\[ f(t) = (1)/(9) e^(-t/9), \quad t \geq 0 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/hqr3a1wdphxnhzgmxihs45b9cav744adqq.png)
To find the joint probability density function for both bulbs failing within a certain time, multiply the individual pdfs. Let T₁ be the lifetime of the first bulb, and T₂ be the lifetime of the second bulb. The joint pdf is given by:
![\[ f_(T_1, T_2)(t_1, t_2) = f(t_1) \cdot f(t_2) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/j0g2iiitk6epomihvhw11cshmgnc85yf3p.png)
Now, substitute the given pdf into this expression:
![\[ f_(T_1, T_2)(t_1, t_2) = (1)/(81) e^(-t_1/9) e^(-t_2/9) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/z3xpooflj2ibmji9ub30g88plondkangwi.png)
The integral for the joint probability is:
![\[ P(T_1 \leq 5, T_2 \leq 5) = \int_(0)^(5) \int_(0)^(5) (1)/(81) e^(-t_1/9) e^(-t_2/9) \, dt_1 \, dt_2 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/6goocg4g63304roe77yyjxoabuaguia892.png)
Calculate it:
![\[ P(T_1 \leq 5, T_2 \leq 5) = \int_(0)^(5) \int_(0)^(5) (1)/(81) e^(-t_1/9) e^(-t_2/9) \, dt_1 \, dt_2 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/6goocg4g63304roe77yyjxoabuaguia892.png)
![\[ = (1)/(81) \int_(0)^(5) \int_(0)^(5) e^(-t_1/9) e^(-t_2/9) \, dt_1 \, dt_2 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/8ucuypz5ripffc4olr7g0yuf5x9mhnbhaw.png)
![\[ = (1)/(81) \int_(0)^(5) \left( \int_(0)^(5) e^(-t_1/9) e^(-t_2/9) \, dt_2 \right) dt_1 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/c9tosl9cu2tq28pw1r6gspcfcwe4iprffg.png)
![\[ = (1)/(81) \int_(0)^(5) \left( \int_(0)^(5) e^(-(t_1 + t_2)/9) \, dt_2 \right) dt_1 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/sykeebxvubjq03swjz79al2nl575xeqfg0.png)
![\[ = (1)/(81) \int_(0)^(5) \left( -9e^(-(t_1 + t_2)/9) \Big|_0^5 \right) dt_1 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/r0y03915ceot6hblcbkjulsvo6tgw1mk0l.png)
![\[ = (1)/(81) \int_(0)^(5) \left( -9e^(-5/9) + 9 \right) dt_1 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/s2kutu2g68d1wo3ywfaxo9ad9n9vq56g2k.png)
![\[ = (1)/(81) \left( -9e^(-5/9) + 9 \right) \int_(0)^(5) dt_1 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/rtn1zbhu8v6ver0d17ys2hjjkllhwjyr4n.png)
![\[ = (1)/(81) \left( -9e^(-5/9) + 9 \right) t_1 \Big|_0^5 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/wvgg9u2dc3nzskqc81vdyaboida74j39xh.png)
![\[ = (1)/(81) \left( -9e^(-5/9) + 9 \right) \cdot 5 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/hlorvnagljv79py2h10hih7vfa6t9vzoyj.png)
![\[ = (1)/(81) \left( -45e^(-5/9) + 45 \right) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/os7t6f9x2fe2ssgi40o0tasj2la7cym91k.png)
The calculated value for
is approximately 0.287.