129k views
0 votes
Find
Lim
[cos(2x)]^(1/x^2)
x->
0^+

User Yugi
by
8.9k points

1 Answer

3 votes

Answer:


(1)/(e^2)

Explanation:


L=\lim_(x\rightarrow 0)(\cos 2x)^(1/x^2)\\\ln L=\ln(\lim_(x\rightarrow 0)(\cos 2x)^(1/x^2))\\\ln L=\lim_(x\rightarrow 0)\ln((\cos 2x)^(1/x^2))\\\ln L=\lim_(x\rightarrow 0)(\ln\cos 2x)/(x^2)\\\ln L=\lim_(x\rightarrow 0)(\ln\cos 2x)/(x^2)=\lim_(x\rightarrow 0)(-2\sin2x/\cos 2x)/(2x)=-2\cdot\lim_(x\rightarrow 0)(\tan 2x)/(2x)=\\=-2\cdot\underbrace{\lim_(x\rightarrow 0)(2/\cos^2 2x)/(2)}_(=1)=-2\\\\\Rightarrow\quad L=e^(-2)=(1)/(e^2)

User Blawless
by
8.3k points