10.9k views
1 vote
A singles tennis court measures (8x – 2) ft long and (3x – 3) ft wide.Which expression represents the area of the court?

a. (24x² + 6x) sq.ft
b. (22x² + 6x) sq.ft
c. (24x²+9x) sq.ft
d. (22x² +9x) sq.ft

User Gene R
by
8.5k points

1 Answer

1 vote

Final answer:

By multiplying the given dimensions of a singles tennis court ((8x – 2) ft by (3x – 3) ft), the area is found to be 24x² - 30x + 6 sq.ft. However, this answer does not match any of the provided choices, indicating a potential typo in the options.

Step-by-step explanation:

To determine which expression represents the area of a singles tennis court with the given dimensions, you need to use the equation for the area of a rectangle, which is length × width. In this problem, the length is given as (8x – 2) ft and the width as (3x – 3) ft.

The expression for the area is calculated by multiplying the length by the width:

Area = (8x – 2) × (3x – 3)

Distributing the terms gives us:

Area = 8x×3x + 8x×(-3) + (-2)×3x + (-2)×(-3)

Area = 24x² - 24x - 6x + 6

Combining like terms:

Area = 24x² - 30x + 6

However, none of the answer choices match this expression exactly. It appears there may have been a typo in the possible answers given. Make sure to review the problem or check for any corrections to the answer choices.

User Rob Wagner
by
7.7k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories