The trapezoid ABCD, after a 270-degree counterclockwise rotation around the origin, has vertices A'(9, 9), B'(9, 5), C'(10, 3), D'(10, 10).
To find the coordinates of the trapezoid ABCD after a 270-degree counterclockwise rotation around the origin, we can use the rotation matrix formula:
![\[ \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/i5egthncvesd74ogfv74mfkluoj0mtho73.png)
where
is the angle of rotation. For a 270-degree counterclockwise rotation,

Let's apply this rotation to each vertex of the trapezoid:
1. For point A(-9, 9):
![\[ \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} -9 \\ 9 \end{bmatrix} = \begin{bmatrix} 9 \\ 9 \end{bmatrix} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/5kt73nqa4yqfyppntynsnwwpfxpbo8oent.png)
2. For point B(-5, 9):
![\[ \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} -5 \\ 9 \end{bmatrix} = \begin{bmatrix} 9 \\ 5 \end{bmatrix} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/ek8iatufp1qrw3orx29uzfeuqyv5h1goaj.png)
3. For point C(-3, 10):
![\[ \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} -3 \\ 10 \end{bmatrix} = \begin{bmatrix} 10 \\ 3 \end{bmatrix} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/a1cmwseqg9ttbspt6x1j8hxrxigvz2avkh.png)
4. For point D(-10, 10):
![\[ \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} -10 \\ 10 \end{bmatrix} = \begin{bmatrix} 10 \\ 10 \end{bmatrix} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/n3osxxayz5x2agev5eqgldhd5sshpx9m8w.png)
So, after a 270-degree counterclockwise rotation, the new coordinates of the trapezoid ABCD are:
A'(9, 9), B'(9, 5), C'(10, 3), D'(10, 10).
The question probable may be:
What would be the coordinates of the trapezoid ABCD after a rotation fo 270 degrees counterclockwise around the origin.
The original coordinates are
A( -9 , 9 ) B(-5 , 9) C(-3 , 10) D(-10 , 10 )