Answer:
(a) Proof below.
![\begin{aligned}\textsf{(b)} \quad x_1&=-6.75308642\\x_2&=-6.561443673\\x_3&=-6.535451368\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/7jllfwwqfbvfea662gt3t71nlv7q5qksxe.png)
(c) Approximations to the location of one of the roots of the equation given in part (a).
Explanation:
Part (a)
Given equation:
![20-x^3-7x^2=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/sbq7hqcma4nhsh2q61rspota6i152x2axx.png)
Add x³ to both sides of the equation:
![\implies 20-x^3-7x^2+x^3=0+x^3](https://img.qammunity.org/2023/formulas/mathematics/high-school/87ps832e1zn7ad9f0v1h2j5xg9o3zm2v1l.png)
![\implies 20-7x^2=x^3](https://img.qammunity.org/2023/formulas/mathematics/high-school/7kan0i8mplezq3x9nxlln8hnch4mxqvq8o.png)
Divide both sides of the equation by x²:
![\implies (20)/(x^2) -7 =x](https://img.qammunity.org/2023/formulas/mathematics/high-school/hyrpuxn5rt8dmt96ciks5b55n9eunl7zeu.png)
Part (b)
Given recursive rule:
![\begin{cases}x_(n+1)=\frac{20}{x_n{^2}}-7\\x_0=-9\end{cases}](https://img.qammunity.org/2023/formulas/mathematics/high-school/iuaislt6ma9h7ua8pr9ajubq6xh2o4qkvk.png)
Therefore:
![\begin{aligned}\implies x_1&=\frac{20}{x_0{^2}}-7\\\\&=(20)/((-9)^2)-7\\\\&=(20)/(81)-7\\\\&=(20)/(81)-(567)/(81)\\\\&=(20-567)/(81)\\\\&=-(547)/(81)\\\\&=-6.75308642\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/p5wx061osa0rc4mi9n4new5zk2wn9ijti3.png)
![\begin{aligned}\implies x_2&=\frac{20}{x_1{^2}}-7\\\\&=(20)/(\left(-(547)/(81)\right)^2)-7\\\\&=(20)/(\left((299209)/(6561)\right))-7\\\\&=(131220)/(299209)-7\\\\&=(131220)/(299209)-(2094463)/(299209)\\\\&=-(1963243)/(299209)\\\\&=-6.561443673\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/dhwbkvuj26rmfpcmzjxzmu3mwa4pff52kg.png)
![\begin{aligned}\implies x_3&=\frac{20}{x_2{^2}}-7\\\\&=(20)/(\left(-6.561443673\right)^2)-7\\\\&=(20)/(\left(43.05254308\right))-7\\\\&=0.4645486322-7\\\\&=-6.535451368\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/e86smgkj2wb2rw9cpfmxoq8xprmf56sq0m.png)
Part (c)
The values x₁, x₂ and x₃ are approximations to the location of one of the roots (zeros) of the equation given in part (a).
Each iteration gives a slightly more accurate value of a root x.