Final answer:
To evaluate the expression a + bc - d, substitute the given values for a, b, c, and d. Simplify the expression by multiplying the fractions, then add and subtract to find the final answer. a + bc - d = 0
Step-by-step explanation:
To evaluate the expression a + bc - d, we substitute the given values for a, b, c, and d:
a = 7/8, b = -7/16, c = 0.8, d = 1/4
Substituting these values, we get:
a + bc - d = 7/8 + (-7/16)(0.8) - 1/4
To simplify the expression, we multiply the fractions and add/subtract:
a + bc - d = 7/8 + (-7/20) - 1/4 = 7/8 - 7/20 - 1/4
To add/subtract the fractions, we need a common denominator:
a + bc - d = (7/8)(5/5) - (7/20)(4/4) - (1/4)(5/5)
After multiplying, we have:
a + bc - d = 35/40 - 28/80 - 5/20
Combining like terms:
a + bc - d = 35/40 - 28/80 - 5/20 = 7/8 - 7/8 - 1/4
Finally, adding and subtracting these fractions gives:
a + bc - d = 0