203k views
2 votes
Find the cross product a ⨯ b. a = 2, 5, 0 , b = 1, 0, 7

User Shanakay
by
9.3k points

1 Answer

5 votes

Final answer:

The cross product of vectors a and b is 35, -14, -5.

Step-by-step explanation:

To find the cross product a ⨯ b where a = 2, 5, 0 and b = 1, 0, 7, we can use the formula Č = (Ay B₂ – Az By)î + (Az Bx − Ax Bz)ĵ + (Ax By – AyBx) Ỏ.

Plugging in the values, we get the cross product Č = (5 * 7 - 0 * 0)î + (0 * 1 - 2 * 7)ĵ + (2 * 0 - 5 * 1) Ỏ.

Simplifying, we have Č = 35î - 14ĵ -5Ỏ. Therefore, the cross product of a and b is 35, -14, -5.

User Vinit Payal
by
8.4k points