145k views
4 votes
Determine the truth ∀alue of the following statements if the uni∀erse of discourse of each ∀ariable is the set of real numbers. Enter your answer as Tor F. 1. ∃x∀y(xy = 0)

2. ∃x (x² = -1)
∃. ∃x∀y≠0(xy = 1)
4. ∀xSy((x + y = 2) ∧ (2x - y = 1))
5. ∀x #0∃y(xy = 1)
6. ∃x(x² = 2)
7. ∀x∃y(x2 = y)
8. ∀x∃y (x = y²)
9. ∃x∃y (x + y ≠ y + x)
10. ∀x∃zty(z = (x+y)/2)
11. ∃x∃y ((x + 2y = 2)^(2x + 4y = 5))
12. ∀x∃y(x + y = 1)

User Reen
by
8.4k points

1 Answer

5 votes

Final answer:

1. ∃x∀y(xy = 0) is false. 2. ∃x (x² = -1) is false. 3. ∃x∀y≠0(xy = 1) is true. 4. ∀xSy((x + y = 2) ∧ (2x - y = 1)) is true. 5. ∀x #0∃y(xy = 1) is true. 6. ∃x(x² = 2) is true. 7. ∀x∃y(x2 = y) is false. 8. ∀x∃y (x = y²) is false. 9. ∃x∃y (x + y ≠ y + x) is true. 10. ∀x∃zty(z = (x+y)/2) is true. 11. ∃x∃y ((x + 2y = 2)^(2x + 4y = 5)) is false. 12. ∀x∃y(x + y = 1) is false.

Step-by-step explanation:

  1. ∃x∀y(xy = 0) - False
  2. ∃x (x² = -1) - False
  3. ∃x∀y≠0(xy = 1) - True
  4. ∀xSy((x + y = 2) ∧ (2x - y = 1)) - True
  5. ∀x #0∃y(xy = 1) - True
  6. ∃x(x² = 2) - True
  7. ∀x∃y(x2 = y) - False
  8. ∀x∃y (x = y²) - False
  9. ∃x∃y (x + y ≠ y + x) - True
  10. ∀x∃zty(z = (x+y)/2) - True
  11. ∃x∃y ((x + 2y = 2)^(2x + 4y = 5)) - False
  12. ∀x∃y(x + y = 1) - False
User OneSolitaryNoob
by
8.3k points