Answer:
D) A″ (3, 2), B″ (3, 0), C″ (−1, 0), D″ (−1, 2)
Explanation:
You want the coordinates of points A", B", C", D" after A(-5, 1), B(-5, 3), C(-1, 3), and D(-1, 1) have been translated by <2, -3> and reflected across the origin.
Translation
The translation transformation is given in the problem statement:
(x, y) ⇒ (x +2, y -3)
Reflection
The reflection transformation is ...
(x, y) ⇒ (-x, -y) . . . . . . . reflection across the origin
Composition
The composition of these transformations is ...
(x, y) ⇒ (-(x +2), -(y -3))
(x, y) ⇒ (-x-2, -y+3)
Application
Using this transformation on the given points, we find ...
A(-5, 1) ⇒ A"(-(-5)-2, -1+3) = A"(3, 2)
B(-5, 3) ⇒ B"(-(-5)-2, -3+3) = B"(3, 0)
C(-1, 3) ⇒ C"(-(-1)-2, -3+3) = C"(-1, 0)
D(-1, 1) ⇒ D"(-(-1)-2, -1+3) = D"(-1, 2)