170k views
21 votes
Need help for Geometry

Need help for Geometry-example-1
User Nilesh Jha
by
4.3k points

1 Answer

6 votes

Direct answer :


\color{plum} \: x \: \bold{ \tt \: = \: 11}

Steps to derive the correct answer :

Given :

  • segment AB = segment DE
  • segment BC = segment EF
  • segment AC = segment DF

Since all sides are equal triangle ABC is congruent to triangle DEF under the SSS congruence criterion.

m∠B = (92+y)°

m∠E = (6y-28)°

We know that :

  • angle B = angle E

Which means :


= \tt92 + y = 6y - 28


=\tt 92 = 6y - 28 - y


=\tt 92 = 5y - 28


= \tt92 + 28 = 5y


= \tt120 = 5y


=\tt y = (120)/(5)


=\tt y = 24

Thus, the value of y = 24

Then :

angle B :


=\tt 92 + y


=\tt 92 + 24


= \tt116

Thus, the measure of angle B = 116

angle E :


= \tt6y - 28


=\tt 6 * 24 - 28


=\tt 144 - 28


=\tt 116

Thus, the measure of angle E = 116

Since the measure of both these angles is equal we can conclude that we have found out their correct measures.

measure of segment AC = 2x + 47

Measure of segment DF = 6x + 3

  • Segment AC = Segment EF

Which means :


= \tt6x + 3 = 2x + 47


= \tt6x + 3 - 2x = 47


= \tt4x + 3 = 47


\tt4x = 47 - 3 \\ 4x = 44


=\tt x = (44)/(4)


=\tt x = 11

Thus, the value of x = 11

Let us check whether or not we have found out the correct value of x by placing 11 in the place of x :


= \tt6 * 11 + 3 = 11 * 2 + 47


=\tt 66 + 3 = 22 + 47


=\tt 69 = 69

  • m∠B = 69°
  • m∠C = 69°

Therefore, the value of x = 11

User Fallon
by
4.0k points