The standard deviation of the binomial random variable X with parameters n=17 and p=0.2 is approximately 1.65 when rounded to two decimal places.
The standard deviation (\(\sigma\)) of a binomial distribution is given by the formula:
![\[ \sigma = √(n * p * (1 - p)) \]](https://img.qammunity.org/2024/formulas/mathematics/college/5z4rttxk3wid5nn28qe8ou1qw58jg0yxeg.png)
Given that n = 17 and p = 0.2, substitute these values into the formula:
![\[ \sigma = √(17 * 0.2 * (1 - 0.2)) \]](https://img.qammunity.org/2024/formulas/mathematics/college/i8vyqdx6c3nvs1xebn50sxxikztnzha3i8.png)
Calculate the expression to find the standard deviation. Round the result to two decimal places.
![\[ \sigma = √(17 * 0.2 * (1 - 0.2)) \]\[ \sigma = √(17 * 0.2 * 0.8) \]\[ \sigma = √(2.72) \]\[ \sigma \approx 1.65 \]](https://img.qammunity.org/2024/formulas/mathematics/college/a0p9r9dkfzm2wvo0w6rf5abd2lbnucmxyf.png)
Therefore, the standard deviation of the binomial random variable \(X\) with n = 17 and p = 0.2 is approximately 1.65 (rounded to two decimal places).