145k views
23 votes
A rectangular box without a top is have a volume of 12 cubic feet. Find the dimensions of

the box that will have minimum surface area.​

User Justanr
by
8.4k points

1 Answer

2 votes
If the length, breadth and height of the box is denoted by a, b and h respectively, then V=a×b×h =32, and so h=32/ab. Now we have to maximize the surface area (lateral and the bottom) A = (2ah+2bh)+ab =2h(a+b)+ab = [64(a+b)/ab]+ab =64[(1/b)+(1/a)]+ab.

We treat A as a function of the variables and b and equating its partial derivatives with respect to a and b to 0. This gives {-64/(a^2)}+b=0, which means b=64/a^2. Since A(a,b) is symmetric in a and b, partial differentiation with respect to b gives a=64/b^2, ==>a=64[(a^2)/64}^2 =(a^4)/64. From this we get a=0 or a^3=64, which has the only real solution a=4. From the above relations or by symmetry, we get b=0 or b=4. For a=0 or b=0, the value of V is 0 and so are inadmissible. For a=4=b, we get h=32/ab =32/16 = 2.

Therefore the box has length and breadth as 4 ft each and a height of 2 ft.
User Asif Mujteba
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories