222k views
1 vote

\frac{(3 √(5)) {}^(3) + 3 \sqrt{ {5}^(3) } }{ √(30 * 24) - \sqrt[4]{25 * 16} }

simplify the following expression​

1 Answer

4 votes

The simplified expression is
\frac{150 √(5) }{4√(15)-4\sqrt[4]{10} } .

Simplify the numerator:


(3√(5) )^3: Use the power of a power rule:
(a^m)^n = a^{(m* n)

This gives us


(3^3)(√(5))^3 \\= 27 * 5^((3/2)) \\= 27 * 5√(5) }


3(√( 5^3)) : Use the constant multiple rule:
k * a = k * (√((a)))

This gives us
3 * 5^((3/2)) = 3 * 5^{(1.5)

Combine the terms in the numerator:


27 * 5√(5) + 3 * 5√(5) \\= 135 √(5) + 15√(5) \\= 150√(5)

Simplify the denominator:

- Factor the radicals in both terms:


-√(30 * 24)\\=√(30) \cdot √(24)\\=√(2 \cdot 3 \cdot 5) \cdot √(2 \cdot 2 \cdot 2 \cdot 3)\\=2 √(3 \cdot 5) \cdot 2 √(2 \cdot 3)\\=4 √(15) \\


& -\sqrt[4]{25 * 16}\\=\sqrt[4]{25} \cdot \sqrt[4]{16}\\=\sqrt[4]{5 \cdot 5} \cdot \sqrt[4]{2 \cdot 2 \cdot 2 \cdot 2}\\=2 \sqrt[4]{5} \cdot 2 \sqrt[4]{2}\\=4 \sqrt[4]{10}

Substitute the simplified numerator and denominator into the fraction:


\frac{150 √(5) }{4√(15)-4\sqrt[4]{10} }

User Cepheus
by
8.1k points