The simplified expression is
. This result is obtained by finding a common denominator, combining fractions, and factoring out common terms, yielding a simplified form.
Let's evaluate the simplification:
![\[ (5xr)/(3x^2y) + (7xr)/(3y) \]](https://img.qammunity.org/2024/formulas/mathematics/college/bwnsnnysehj7l1m96cfssot1ch5c7lhkvk.png)
To combine the fractions, find a common denominator, which is
:
![\[ (5xr \cdot 3y)/(3x^2y \cdot 3y) + (7xr \cdot 3x^2y)/(3y \cdot 3x^2y) \]](https://img.qammunity.org/2024/formulas/mathematics/college/oz33u4s51ew5izhf70j53f5mxlt78wlccm.png)
Simplify the numerators:
![\[ (15xyr)/(9x^2y) + (21x^2yr)/(9x^2y) \]](https://img.qammunity.org/2024/formulas/mathematics/college/zk84q1ml6y7xx40937gz6f0penef0d459x.png)
Combine the numerators:
![\[ (15xyr + 21x^2yr)/(9x^2y) \]](https://img.qammunity.org/2024/formulas/mathematics/college/lnohiqqlbe7ryictzhfa9f59m39sfakuwe.png)
Factor out common terms:
![\[ (3xr(5y + 7x))/(9x^2y) \]](https://img.qammunity.org/2024/formulas/mathematics/college/na81jwzb5tcjqyh5v9pf6xo4wzetc40n16.png)
Now, simplify the fraction by canceling common factors:
![\[ (5r+7x^2r)/(3xy) \]](https://img.qammunity.org/2024/formulas/mathematics/college/c1gg8v88zqzwzrm9lrjg61dyoaau7b6unr.png)
The simplified expression is
.