6.9k views
5 votes

\sqrt{4 + \sqrt{4 + \sqrt{4 + x { \\ }^(2) } } }

\sqrt{4 + \sqrt{4 + \sqrt{4 + x { \\ }^{2} } } }
give me the full answer on notebook

User Ziofil
by
7.8k points

1 Answer

1 vote

The original expression simplifies to
\(\sqrt{4 + √(4 + x^2)}\).

To simplify the given expression
\(\sqrt{4 + \sqrt{4 + √(4 + x^2)}} \), we can break it down step by step. Let
\(y = √(4 + x^2)\).

1. Substitute \(y\) into the innermost square root:


\[ \sqrt{4 + \sqrt{4 + √(4 + x^2)}} = \sqrt{4 + √(4 + y)} \]

2. Substitute \(y\) into the next layer:


\[ \sqrt{4 + √(4 + y)} = √(4 + y) \]

3. Substitute \(y\) one last time:


\[ √(4 + y) = \sqrt{4 + √(4 + x^2)} \]

So, the simplified expression is
\(\sqrt{4 + √(4 + x^2)}\).

Now, substitute y back in to get the final expression in terms of x:


\[ \sqrt{4 + √(4 + x^2)} = \sqrt{4 + \sqrt{4 + √(4 + x^2)}} \]

User Anche
by
8.1k points