108k views
3 votes
Determine the value of h’(8)

Determine the value of h’(8)-example-1

1 Answer

1 vote

Answer:

1.5

Explanation:

At x = 8 :

  • f(x) is linear and pass through (5, 7) & (9, 3)
  • g(x) is linear and pass through (5, 1) & (9, -3)

Therefore:


\boxed{(y-y_1)/(y_2-y_1)=(x-x_1)/(x_2-x_1) }

for f(x) :


(y-7)/(3-7)=(x-5)/(9-5)


(y-7)/(-4)=(x-5)/(4)


y-7=-(x-5)


y=-x+12


f(x)=-x+12


f'(x)=-1


f(8) = -8+12


=4


f'(8)=-1

for g(x):


(y-1)/(-3-1)=(x-5)/(9-5)


(y-1)/(-4)=(x-5)/(4)


y-1=-(x-5)


y=-x+6


g(x)=-x+6


g'(x)=-1


g(8)=-8+6


=-2


g'(8)=-1


\boxed{d((u)/(v) )=(u'v-uv')/(v^2) }

Therefore,


h'(x)=(f'(x)\cdot g(x)-f(x)\cdot g'(x))/((g(x))^2)


h'(8)=(f'(8)\cdot g(8)-f(8)\cdot g'(8))/((g(8))^2)


=(-1(-2)-(4)(-1))/((-2)^2)


=1.5

User Xhh
by
7.8k points