The current flowing through the silicon rod is approximately

To calculate the current flowing through the silicon rod, we can use Ohm's Law, which is given by the formula:
![\[ I = (V)/(R) \]](https://img.qammunity.org/2024/formulas/physics/college/85qdm1e0d8bzb4scbluz16aglfjxugnoyy.png)
where:
- I is the current,
- V is the voltage applied,
- R is the resistance.
The resistance (R) of the silicon rod can be calculated using the formula for the resistance of a cylindrical conductor:
![\[ R = (\rho \cdot L)/(A) \]](https://img.qammunity.org/2024/formulas/physics/college/gqcrtj3bv3mfeihybjf7tkgy8tavu5zy2d.png)
where:
-
is the resistivity of the material (given as
for silicon),
- L is the length of the rod,
- A is the cross-sectional area of the rod.
The cross-sectional area (A) of the rod can be calculated using the formula for the area of a circle:
![\[ A = \pi \cdot \left((d)/(2)\right)^2 \]](https://img.qammunity.org/2024/formulas/physics/college/mp36t0588pkv68xn1ivt36ltj77q9g7y7k.png)
where:
- d is the diameter of the rod.
Now, substitute these values into the equations to find R and then use Ohm's Law to find I.
Let's calculate it.
First, calculate the cross-sectional area (A):
![\[ A = \pi \cdot \left((d)/(2)\right)^2 \]](https://img.qammunity.org/2024/formulas/physics/college/mp36t0588pkv68xn1ivt36ltj77q9g7y7k.png)
![\[ A = \pi \cdot \left(\frac{2.54 \, \text{cm}}{2}\right)^2 \]](https://img.qammunity.org/2024/formulas/physics/college/bpkg0lryax7kgt4bdrcf71yx7f383ghd1t.png)
![\[ A = \pi \cdot \left(1.27 \, \text{cm}\right)^2 \]](https://img.qammunity.org/2024/formulas/physics/college/2hidyehpg641ub01r22vihvnrgtgffblmi.png)
![\[ A \approx \pi \cdot 1.6089 \, \text{cm}^2 \]](https://img.qammunity.org/2024/formulas/physics/college/k7zr56t7xmv28sheo8wbxycnfymm1h0nps.png)
![\[ A \approx 5.06 \, \text{cm}^2 \]](https://img.qammunity.org/2024/formulas/physics/college/a3u8boj3g3kteqqd9xb8fnomurkw8tjm7v.png)
Next, calculate the resistance (R):
![\[ R = (\rho \cdot L)/(A) \]](https://img.qammunity.org/2024/formulas/physics/college/gqcrtj3bv3mfeihybjf7tkgy8tavu5zy2d.png)
![\[ R = \frac{2300 \, \Omega \cdot \text{m} \cdot 0.28 \, \text{m}}{0.000506 \, \text{m}^2} \]](https://img.qammunity.org/2024/formulas/physics/college/y74er8rhxylgnughpl8mi36wg7wfg5i3e9.png)
![\[ R \approx \frac{644 \, \Omega \cdot \text{m} \cdot \text{m}}{0.000506 \, \text{m}^2} \]](https://img.qammunity.org/2024/formulas/physics/college/4g4a7o2vczhhjuaa3ohmzcvlc2yuycgx2p.png)
![\[ R \approx 1272727.27 \, \Omega \]](https://img.qammunity.org/2024/formulas/physics/college/bm489viinjls7cqgjyc2sij80khre9hxpj.png)
Now, use Ohm's Law to find the current (I):
![\[ I = (V)/(R) \]](https://img.qammunity.org/2024/formulas/physics/college/85qdm1e0d8bzb4scbluz16aglfjxugnoyy.png)
![\[ I = \frac{8000 \, \text{V}}{1272727.27 \, \Omega} \]](https://img.qammunity.org/2024/formulas/physics/college/dwk6cg7rq01ecdp3t3nw9iz23y0r5es7wl.png)
![\[ I \approx \frac{8000 \, \text{V}}{1.27 * 10^6 \, \Omega} \]](https://img.qammunity.org/2024/formulas/physics/college/khpa7pxjazpgnv7lpq6m6ofhucquenpq79.png)
![\[ I \approx 0.00629 \, \text{A} \]](https://img.qammunity.org/2024/formulas/physics/college/2e26hxu1if1yhdpqbju22tetlv6xwuo1nd.png)
So, the current flowing through the silicon rod is approximately

The complete question is:
What current flows through a 2.54 cm diameter rod of pure silicon that is 28.0 cm long, when 8.00 x 103 V is applied to it? The resistivity of silicon is 2300 Ωm.