Final answer:
To solve for the magnitude of the golf ball's momentum just before it strikes the water, we need to calculate its final velocity using the principles of physics. We will use the kinematic equation for free falling objects and then apply the definition of momentum.
The momentum of the golf ball just before it strikes the water is approximately 0.133 kg.m/s.
Step-by-step explanation:
The momentum of an object is calculated by multiplying its mass by its velocity. In this case, the mass of the golf ball is 0.0500 kg and its velocity just before it strikes the water can be found using the principle of conservation of energy.
First, we can find the final velocity of the ball just before striking the water using the equation:
mgh = ½mv²
Where m is the mass of the ball, g is the acceleration due to gravity, h is the height it falls, and v is the final velocity. Rearranging the equation to solve for v, we have:
v = sqrt(½gh)
Substituting the known values, we have:
v = sqrt(½ * 9.8 m/s² * 14.5 m)
v = sqrt(7.14)
v ≈ 2.67 m/s
Now that we have the final velocity, we can calculate the momentum using the equation:
p = mv
Substituting the known values, we have:
p = 0.0500 kg * 2.67 m/s
p ≈ 0.133 kg.m/s