The average value of f(x) on the interval x=0 to x=12 is 5.
The average value of a function f(x) on the interval [a, b] can be calculated using the formula:
![\[ \text{Average value} = (1)/(b - a) \int_(a)^(b) f(x) \, dx \]](https://img.qammunity.org/2024/formulas/mathematics/college/ee21pu0bqix3mf9gceaeuoejuzqpqr651g.png)
In this case, the interval is from x = 0 to x = 12, and the given integral is
.
Therefore, the average value is:
![\[ \text{Average value} = (1)/(12 - 0) * 60 \]](https://img.qammunity.org/2024/formulas/mathematics/college/dpbgcj6v0rzh80b3glm7x44yj79vncz56k.png)
![\[ \text{Average value} = (1)/(12) * 60 \]](https://img.qammunity.org/2024/formulas/mathematics/college/btjhlqz4bklaktx3plnh6d6oo96eh3j7av.png)
![\[ \text{Average value} = 5 \]](https://img.qammunity.org/2024/formulas/mathematics/college/ebb5sj9qis7h199ekfegxisdz1eilpsbix.png)
So, the average value of f(x) on the interval [0, 12] is 5.