8.2k views
3 votes
Prove that the line joining the point of intersection of two angular bisectors of the base angles of an isosceles triangle to the vertex bisects the vertical angle.

~Thanks in advance ! ツ​

User Stibu
by
5.0k points

1 Answer

5 votes

Answer:

See Below.

Explanation:

Please refer to the attachment below.

Essentially, we want to prove that AE bisects ∠A.

Statements: Reasons:


1)\text{ } \Delta ABC \text{ is isosceles} Given


2)\text{ } m\angle C=m\angle B Isosceles Triangle Theorem


3)\text{ }m\angle C=m\angle ACE+m\angle ECD Angle Addition


4)\text{ } CE\text{ bisects }\angle C Given


5)\text{ } m\angle ACE=m\angle ECD Definition of Bisector


6)\text{ } m\angle C=2m\angle ECD Substitution


7)\text{ } m\angle B=\angle ABE+m\angle EBD Angle Addition


8)\text{ } BE\text{ bisects } \angle B Given


9)\text{ }m\angle ABE=m\angle EBD Definition of Bisector


10)\text{ } m\angle B=2m\angle EBD Substitution


11)\text{ } 2m\angle ECD=m\angle EBD Substitution


12)\text{ } m\angle ECD=m\angle EBD Division Property of Equality


13)\text{ } CE=BE Isosceles Triangle Theorem


14)\text{ } AC=AB Isosceles Triangle Theorem


15)\text{ } AE=AE Reflexive Property


16)\text{ } \Delta AEC\cong \Delta AEB SSS Congruence


17)\text{ } \angle CAE\cong \angle BAE CPCTC


18)\text{ } AE\text{ is a bisector of } \angle A Converse of Bisector

Prove that the line joining the point of intersection of two angular bisectors of-example-1
User Mattpic
by
4.1k points