To simplify the expression 39/18 times 39/18 } times 3/12 times 3/13 times 13/3 let's break it down:
1. Reduce the fraction
frac{39}{18} :
\( \frac{39}{18} = \frac{13}{6} \)
2. Simplify the expression with the reduced fraction:
\( \frac{13}{6} \times \frac{13}{6} \times \frac{3}{12} \times \frac{3}{13} \times \frac{13}{3} \)
3. Cancel common factors across numerators and denominators:
\( \frac{13}{\cancel{6}} \times \frac{\cancel{13}}{\cancel{6}} \times \frac{\cancel{3}}{\cancel{12}} \times \frac{\cancel{3}}{\cancel{13}} \times \frac{\cancel{13}}{\cancel{3}} \)
4. Multiply the remaining factors: 1
So, the simplified expression is 1
Expressing the fractions without parentheses, the simplified result is:
13/6 * 13/6 * 3/12 * 3/13 * 13/3