30.8k views
0 votes
Question 2 (1 point) \large \sqrt[4]{XY} X \large \sqrt[4]{XY} x \large \sqrt[4]{XY} x \large \sqrt[4]{XY} = a X b Y c 4XY d XY

User Gatlingxyz
by
8.3k points

1 Answer

0 votes

The given expression simplifies to
\(XY * x * √(XY)\), making the correct choice XY. Here option D is correct.

Let's simplify the given expression step by step:


\[\sqrt[4]{XY} * X * \sqrt[4]{XY} * x * \sqrt[4]{XY} * x * \sqrt[4]{XY}\]

Firstly, notice that
\(\sqrt[4]{XY} * \sqrt[4]{XY} * \sqrt[4]{XY} = \sqrt[4]{(XY)^3}\). Now, substitute this back into the expression:


\[X * \sqrt[4]{(XY)^3} * x * \sqrt[4]{(XY)^3} * x * \sqrt[4]{(XY)^3}\]

Next, we can rearrange the terms to group the similar ones:


\[(X * x * \sqrt[4]{(XY)^3}) * (x * \sqrt[4]{(XY)^3}) * \sqrt[4]{(XY)^3}\]

Now, notice that
\((X * x * \sqrt[4]{(XY)^3})\) is the same as
\(\sqrt[4]{(XY)^4}\). Replace this in the expression:


\[\sqrt[4]{(XY)^4} * (x * \sqrt[4]{(XY)^3}) * \sqrt[4]{(XY)^3}\]

Finally,
\(\sqrt[4]{(XY)^4}\) simplifies to XY, so the expression becomes:


\[XY * (x * \sqrt[4]{(XY)^3}) * \sqrt[4]{(XY)^3}\]

This can be further simplified to:


\[XY * x * (XY)^{(3)/(4)} * (XY)^{(3)/(4)}\]

Now, combine the exponents:


\[XY * x * (XY)^{(3)/(2)}\]

The equivalent expression is
\(XY * x * √(XY)\). Therefore, the correct answer is D) XY.

Complete question:

Which of the following expressions is equivalent to
\(\sqrt[4]{XY} * X * \sqrt[4]{XY} * x * \sqrt[4]{XY} * x * \sqrt[4]{XY}\)?

A) X

B) Y

C) 4XY

D) XY

User Arnold
by
8.0k points