The area of the parallelogram formed by vectors
and
is
square units, calculated from the magnitude of their cross product.
The area A of a parallelogram formed by two vectors
and
is given by the magnitude of their cross product:
![\[ A = |\vec{A} * \vec{B}| \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/5staa9ao1pb41nijohtrkcm5dfisz526c9.png)
The cross product
is calculated as the determinant of the following matrix:
![\[ \vec{A} * \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/zwsptgsfnje3uom33cs9t4ji79h6wgco32.png)
Given vectors
, we can find the cross product:
![\[ \vec{A} * \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -3 & 1 \\ 1 & 1 & 1 \end{vmatrix} \]\[ \vec{A} * \vec{B} = (\hat{i})(-3 - 1) - (\hat{j})(1 - 1) + (\hat{k})(1 - 3) \]\[ \vec{A} * \vec{B} = -4\hat{i} - 2\hat{k} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/16gfbecyp6pepw9qne8u2763u6jd08px9i.png)
Now, find the magnitude of the cross product:
![\[ | \vec{A} * \vec{B} | = √((-4)^2 + 0^2 + (-2)^2) \]\[ | \vec{A} * \vec{B} | = √(16 + 4) \]\[ | \vec{A} * \vec{B} | = √(20) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/n8evmos0j23lo03d57hgxx7h654au3ix6f.png)
So, the area A of the parallelogram is
square units.