The diameter of the circle, determined by parallel chords of lengths 6 cm and 8 cm, spaced 1 cm apart, with the center on the same side, is approximately 10 cm (Option D).
- Chords AB and CD are parallel with lengths 8 cm and 6 cm, respectively.
- The chords are 1 cm apart.
- The center O is on the same side of the chords.
Concept Used:
- The perpendicular bisector of a chord passes through the center of a circle.
Calculation:
1. Let O be the center of the circle with radius r, and chords AB = 8 cm and CD = 6 cm parallel to each other.
2. Drop perpendiculars OM and ON from O to chords AB and CD, respectively. It is given that MN = 1 cm.
3. Using the Pythagorean theorem:
(Equation 1)
4. In
:
(Equation 2)
5. Now, using equations (1) and (2):
![\[ O \cdot M^2 + 16 = (O \cdot M^2 + 2OM + 1) + 9 \] \[ O \cdot M^2 + 16 = O \cdot M^2 + 2OM + 10 \] \[ 2OM = 6 \] \[ OM = 3 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/t0mptlxzu6ex2wrtp28plmsakchjt6sjkm.png)
6. Substitute OM = 3 into equation (1):
![\[ O \cdot 3^2 + 16 = r^2 \] \[ 9O + 16 = r^2 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/hw0q2snsxi87jhp1hcyg1377y66f2epwel.png)
7. Substitute \( r^2 \) from equation (2):
![\[ 9O + 16 = (O \cdot 3 + 1)^2 + 9 \] \[ 9O + 16 = 9O^2 + 6O + 1 + 9 \] \[ 9O^2 + 6O - 16 = 0 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/hnjdf7zspagn0dnoyw5gn2qmhmb9q571jy.png)
8. Solve the quadratic equation for O:
![\[ O = (-b \pm √(b^2 - 4ac))/(2a) \] \[ O = (-6 \pm √(6^2 - 4(9)(-16)))/(2(9)) \] \[ O = (-6 \pm √(36 + 576))/(18) \] \[ O = (-6 \pm √(612))/(18) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/anltntm8ji1yke69ipczt096tc1caw27nt.png)
Since O is the radius of the circle, choose the positive root:
![\[ O = (-6 + √(612))/(18) \] \[ O \approx (24.72)/(18) \] \[ O \approx 1.373 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/vrbn8doyhptropzfxncdwwpuovwh8ogaer.png)
9. Now, use
to find r:
![\[ r^2 = 9 \cdot 1.373 + 16 \] \[ r^2 \approx 29.357 \] \[ r \approx √(29.357) \] \[ r \approx 5.42 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/jyi9s355d6vpy2mdbfvy6kvj8jxaw2lx57.png)
10. Finally, the diameter of the circle is 2r:
![\[ \text{Diameter} = 2 \cdot 5.42 \] \[ \text{Diameter} \approx 10.84 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/spt0u7ry8qd0rzgt8ifx44c4h2q1lzy7b7.png)
Therefore, the closest option among the given choices is D. Rs. 10 cm.