Final answer:
The last four terms of the expansion of the binomial (2x³ + 3y²)⁷ are 128x²¹ + 1344x¹8y² - 6048x¹⁵y⁴ + 15120x²y⁶.
Step-by-step explanation:
The last four terms of the expansion of the binomial (2x³ + 3y²)⁷ are 128x²¹ + 1344x¹8y² - 6048x¹⁵y⁴ + 15120x²y⁶.
The binomial theorem states that the expansion of (a + b)ⁿ can be found using the formula: (a + b)ⁿ = C(n, 0) * aⁿ * b⁰ + C(n, 1) * aⁿ⁻¹ * b¹ + ..., where C(n, k) represents the binomial coefficient and is equal to n! / (k! * (n - k)!).
Using this formula, we can expand (2x³ + 3y²)⁷ and find the last four terms as follows:
- Term 1: C(7, 3) * (2x³)⁴ * (3y²)³ = 35 * 16x¹² * 27y⁶ = 15120x¹²y⁶
- Term 2: C(7, 2) * (2x³)⁵ * (3y²)² = 21 * 32x¹⁵ * 9y⁴ = 6048x¹⁵y⁴
- Term 3: C(7, 1) * (2x³)⁶ * (3y²)¹ = 7 * 64x¹⁸ * 3y² = 1344x¹⁸y²
- Term 4: C(7, 0) * (2x³)⁷ * (3y²)⁰ = 1 * 128x²¹ * 1 = 128x²¹