Final answer:
To evaluate the polynomial 2x³ - 3x² + 4x + 2 at x = 4 using synthetic substitution, we systematically combine the coefficients with the value of x through multiplication and addition to arrive at the final value, which is 98.
Step-by-step explanation:
To evaluate the polynomial function 2x³ - 3x² + 4x + 2 for x = 4 using synthetic substitution, we follow these steps:
- Write down the coefficients of the polynomial: 2, -3, 4, 2.
- Write the value of x for synthetic substitution (here x = 4) to the left of the coefficients.
- Bring down the first coefficient (2).
- Multiply this number by x (our synthetic x-value, which is 4 in this case) and write the result under the second coefficient -3. Add these two values to get the next coefficient in the next row.
- Repeat this process for all coefficients.
- The last number obtained in the row will be the value of the polynomial for x = 4.
By applying these steps, we get the following:
- 2 (the first coefficient is brought down)
- 2 * 4 = 8, and -3 + 8 = 5
- 5 * 4 = 20, and 4 + 20 = 24
- 24 * 4 = 96, and 2 + 96 = 98 (this is the value of the polynomial for x = 4)
So, the evaluation of 2x³ - 3x² + 4x + 2 for x = 4 is 98.