An example of how to implement Expectimax for a game where the opponent has a 50% chance of playing optimally and a 50% chance of playing randomly is given below:
Python
def expectimax(node, depth, isMaximizingPlayer):
if depth == 0:
return node.utility
if isMaximizingPlayer:
bestValue = -float("inf")
for child in node.children:
bestValue = max(bestValue, expectimax(child, depth - 1, False))
return bestValue
else:
totalValue = 0.0
p = 0.5
for child in node.children:
totalValue += p * expectimax(child, depth - 1, True)
return totalValue
So, to implement Expectimax, the steps are:
- Define a utility function
- Recursively evaluate game states
- Handle chance nodes