Final answer:
To construct a 98% confidence interval for the mean number of energy drinks consumed each week by adults, we need to calculate the sample mean, sample standard deviation, and use the formula (x - z * (σ/√n), x + z * (σ/√n)). The confidence interval is (6.96, 7.24).
Step-by-step explanation:
To construct a 98% confidence interval for the mean number of energy drinks consumed each week by adults, we can use the formula: (x - z * (σ/√n), x + z * (σ/√n)).
- Calculate the sample mean, which is 7.1.
- Let σ = 1.3 and n = 1133 (the sample size).
- Find the value of z for a 98% confidence level, which corresponds to a two-tailed test. From the z-table, this value is approximately 2.33.
- Plug in the values into the formula: (7.1 - 2.33 * (1.3/√1133), 7.1 + 2.33 * (1.3/√1133))
- Perform the calculations to get the confidence interval: (6.96, 7.24)