160k views
2 votes
An exponential function follows a pattern of decay through the points (–2, 25), (–1, 5), and (0, 1). Determine the base of the function.

1) 5
2) –5
3) negative one fifth
4) one fifth

User Derstauner
by
8.6k points

1 Answer

2 votes

Final answer:

To determine the base of the exponential decay function from the points given, we find that the base is one fifth (1/5) after solving the corresponding system of equations.

Step-by-step explanation:

The student is dealing with an exponential decay function, which can be determined using the given points. The general form is f(x) = abx, where a is the initial value and b is the base of the exponential function.

Using the points given, we can create a system of equations:

  • 25 = ab-2
  • 5 = ab-1
  • 1 = ab0 = a

Since ab0 simply equals a, we know that a = 1. Substituting this into the second equation gives us 5 = 1 * b-1, which simplifies to b = 1/5. Thus, the base of the exponential decay function is one fifth.

User Marcosbdm
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.