For data pairs (a):
. For data pairs (b):
. No, data in (a) and (b) differ. Solve for x in (a):

To find the least-squares equation for the given data pairs, we'll use the formulas for the slope (m) and y-intercept (b) in the equation y = mx + b.
Part (a):
Given data pairs:
and
![\(y = [6, 4, 8]\)](https://img.qammunity.org/2024/formulas/mathematics/high-school/scoxv0i07x3echa7maink73h8k5fhb4wrd.png)
Step 1: Calculate the mean of x

![\[\bar{x} = (2 + 5 + 6)/(3) = 4.333, \quad \bar{y} = (6 + 4 + 8)/(3) = 6.000\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/tlebsm0cwln3r4i22hebh7txj16vgtetdv.png)
Step 2: Calculate the slope (m):
![\[m = \frac{\sum_(i=1)^(n) (x_i - \bar{x})(y_i - \bar{y})}{\sum_(i=1)^(n) (x_i - \bar{x})^2}\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/15hlyzxx2270tcuoe3oypqale0ywe5isd8.png)
![\[m = ((2-4.333)(6-6) + (5-4.333)(4-6) + (6-4.333)(8-6))/((2-4.333)^2 + (5-4.333)^2 + (6-4.333)^2)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/5r96nf6dfffc3ip61f4vmf8ak17vnx03zm.png)
![\[m \approx (1.667 - 0.666 + 3.334)/(6.111) \approx (4.335)/(6.111) \approx 0.710\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/a8zoovby37df8k7sn4cp3zczra528nqisv.png)
Step 3: Calculate the y-intercept (b):
![\[b = \bar{y} - m \cdot \bar{x}\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/zwgbpohp7yjrj2ifh5pfhz3fyyfhuou10x.png)
![\[b = 6.000 - 0.710 \cdot 4.333 \approx 3.487\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/mkkoaoqt2r17a8h55o9ny46qul901uk8ge.png)
Step 4: Write the least-squares equation:
![\[y \approx 0.710x + 3.487\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/wj5h5sq441112reuwzaveg5gfaau4wfpw8.png)
Part (b):
Given data pairs:
![\(x = [6, 4, 8]\) and \(y = [2, 5, 6]\)](https://img.qammunity.org/2024/formulas/mathematics/high-school/kdawctu96m0qx1vcv5bhl7jo7o0s0boz5a.png)
Repeat the same steps as in Part (a).
Step 1:
![\[\bar{x} = (6 + 4 + 8)/(3) = 6.000, \quad \bar{y} = (2 + 5 + 6)/(3) = 4.333\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/y9bgxio8id8boifxb80aa0ldx9v5jm0zr2.png)
Step 2:
![\[m \approx ((6-6)(2-4.333) + (4-6)(5-4.333) + (8-6)(6-4.333))/((6-6)^2 + (4-6)^2 + (8-6)^2)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/r3jcy4io2wuon7n9vvvpw67ab1t8ey2pka.png)
![\[m \approx (-2.333 + 1.333 + 3.334)/(4) \approx (2.334)/(4) \approx 0.584\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/h4wyb8cvzc8hc9wi8lxkjnywx9yh2t0773.png)
Step 3:
![\[b = \bar{y} - m \cdot \bar{x} \approx 4.333 - 0.584 \cdot 6 \approx 0.315\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/qnb0bgviqab4hcngzdqn9qem8mtz4dkfbd.png)
Step 4:
![\[y \approx 0.584x + 0.315\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/6qas9gqpatgz0mrmy0xftnh5a2z170rjz6.png)
Part (c):
No, we did not simply exchange the x and y values of each data pair. The data in part (a) and part (b) have different values.
Part (d):
To solve the equation from Part (a) for x:
![\[x = (y - b)/(m)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/s4zzrqticjkdgnk3xxsy1m5ymq6hsu2ppl.png)
Substitute the values

![\[x \approx (6 - 3.487)/(0.710) \approx 3.701\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/m4w3roj5olkyicl5jk1v0kgjg145k3dva5.png)
So, the solution for x is approximately
(rounded to 3 decimal places).