Final answer:
The value of tangentθ on the unit circle is the ratio of the y-coordinate to the x-coordinate of a point on the circle. Without specific coordinates or angle θ, we cannot determine the answer from the provided options.
Step-by-step explanation:
The value of tangentθ on the unit circle is defined as the ratio of the y-coordinate to the x-coordinate of a point on the circle's circumference. When θ is an angle in standard position with its vertex at the origin and one ray along the positive x-axis, the point (x, y) corresponding to θ on the unit circle will give us the sine and cosine values as y and x, respectively. Therefore, tangentθ is sineθ/cosineθ.
To determine the specific value of tangentθ for the given question, we would need the exact coordinates or the angle θ itself. Without this information, it is not possible to provide the correct answer from the options given.