The limit
is evaluated using L'Hôpital's Rule, simplifying to
, resulting in a limit of 2 as x approaches 0.
To evaluate the limit
, we'll apply algebraic simplification and use known limits.
1. **Factorization:**
![\[\lim_{{x \to 0}} \left[ (1+x^2) \cdot \frac{{2x+1}}{{x \sin(x)}} \right] = \lim_{{x \to 0}} \frac{{(1+x^2)(2x+1)}}{{x \sin(x)}}\]](https://img.qammunity.org/2024/formulas/mathematics/college/wrznqqads4rqmmr9e9o08aoed5xqn8t99s.png)
2. **Apply L'Hôpital's Rule:**
![\[ \lim_{{x \to 0}} \frac{{(1+x^2)(2x+1)}}{{x \sin(x)}} = \frac{{(2x)(1+x^2) + (2)(2x+1)(x)}}{{\sin(x) + x \cos(x)}}\]](https://img.qammunity.org/2024/formulas/mathematics/college/pfmx63o5wrlzrdw3ksv3dtik5hozvmgylc.png)
Simplify further:
![\[ = \frac{{2x + 2x^3 + 4x + 2}}{{\sin(x) + x \cos(x)}} \]](https://img.qammunity.org/2024/formulas/mathematics/college/r4hoizgt3fy21a04w3c7tidpefpmm1798x.png)
![\[= \frac{{2x^3 + 6x + 2}}{{\sin(x) + x \cos(x)}} \]](https://img.qammunity.org/2024/formulas/mathematics/college/nbp487l9oattbvr30df09bioqtejb7cq83.png)
3. **Evaluate the Limit:**
Now, substitute x = 0:
![\[\lim_{{x \to 0}} \frac{{2x^3 + 6x + 2}}{{\sin(x) + x \cos(x)}} = \frac{{2}}{{1}} = 2\]](https://img.qammunity.org/2024/formulas/mathematics/college/q9x1mszp2hl60g2apk64nz5012hmxiw48i.png)
Therefore,
![\(\lim_{{x \to 0}} \left[ (1+x^2) \cdot \frac{{2x+1}}{{x \sin(x)}} \right] = 2\).](https://img.qammunity.org/2024/formulas/mathematics/college/b6dpldwyi6jarswikj8qpj0wi5yunkpj10.png)