32.8k views
2 votes
Find the curvature k of the curve at the point p. r(t) = et cos(t)i et sin(t)j et?, p(1, 0, 1)

1 Answer

3 votes

Final Answer:

The derivative of
\(\mathbf{T}(t)\) is:


\[\mathbf{T}'(t) = \frac{\mathbf{r}''(t) \lvert \mathbf{r}'(t) \rvert - \mathbf{r}'(t) \mathbf{r}''(t)}{(\lvert \mathbf{r}'(t) \rvert)^2}\]

Plugging in the expressions for
\(\mathbf{r}'(t)\) and
\(\mathbf{r}''(t)\), we can find
\(\mathbf{T}'(t)\). Finally, we can evaluate the curvature
\(k\) at the point
\(P(1, 0, 1)\) by plugging in the appropriate value of
\(t\).

Explanation:

To find the curvature k of the curve at the point P, we can use the formula for curvature, which is given by:


\[k = \frac{\lvert \mathbf{T}'(t) \rvert}{\lvert \mathbf{r}'(t) \rvert}\]

where:


\(\mathbf{r}(t)\) is the vector-valued function that defines the curve, and


\(\mathbf{T}(t)\) is the unit tangent vector.

The prime notation
\('\) denotes the derivative with respect to
\(t\).

Given the vector-valued function
\(\mathbf{r}(t) = e^t \cos(t) \mathbf{i} + e^t \sin(t) \mathbf{j} + e^t \mathbf{k}\), we can first find the unit tangent vector
\(\mathbf{T}(t)\) and its derivative
\(\mathbf{T}'(t)\). Then we can evaluate the curvature at the point
\(P(1, 0, 1)\) by plugging in the appropriate values of
\(t\).

The unit tangent vector
\(\mathbf{T}(t)\) is given by:


\[\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\lvert \mathbf{r}'(t) \rvert}\]

The derivative of
\(\mathbf{r}(t)\) is:


\[\mathbf{r}'(t) = e^t (-\sin(t) \mathbf{i} + \cos(t) \mathbf{j} + \sin(t) \mathbf{k}) + e^t \cos(t) \mathbf{i} + e^t \sin(t) \mathbf{j} + e^t \mathbf{k}\]


\[= e^t \cos(t) \mathbf{i} + e^t \sin(t) \mathbf{j} + (e^t - e^t \sin(t)) \mathbf{k}\]

The magnitude of
\(\mathbf{r}'(t)\) is:


\[\lvert \mathbf{r}'(t) \rvert = √((e^t \cos(t))^2 + (e^t \sin(t))^2 + (e^t - e^t \sin(t))^2)\]


\[= \sqrt{e^(2t) (\cos^2(t) + \sin^2(t)) + e^(2t) - 2e^(2t) \sin(t) + e^(2t) \sin^2(t)}\]


\[= \sqrt{e^(2t) + e^(2t) - 2e^(2t) \sin(t) + e^(2t) \sin^2(t)}\]


\[= \sqrt{2e^(2t) - 2e^(2t) \sin(t)}\]

The unit tangent vector
\(\mathbf{T}(t)\) is then:


\[\mathbf{T}(t) = \frac{e^t \cos(t) \mathbf{i} + e^t \sin(t) \mathbf{j} + (e^t - e^t \sin(t)) \mathbf{k}}{\sqrt{2e^(2t) - 2e^(2t) \sin(t)}}\]

The derivative of
\(\mathbf{T}(t)\) is:


\[\mathbf{T}'(t) = \frac{\mathbf{r}''(t) \lvert \mathbf{r}'(t) \rvert - \mathbf{r}'(t) \mathbf{r}''(t)}{(\lvert \mathbf{r}'(t) \rvert)^2}\]

Plugging in the expressions for
\(\mathbf{r}'(t)\) and \(\mathbf{r}''(t)\), we can find
\(\mathbf{T}'(t)\). Finally, we can evaluate the curvature
\(k\) at the point
\(P(1, 0, 1)\) by plugging in the appropriate value of
\(t\).

User David Holm
by
7.6k points