Final Answer:
The derivative of
is:
![\[\mathbf{T}'(t) = \frac{\mathbf{r}''(t) \lvert \mathbf{r}'(t) \rvert - \mathbf{r}'(t) \mathbf{r}''(t)}{(\lvert \mathbf{r}'(t) \rvert)^2}\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/bfj8tum617i6rmalb2ljwrios375vxxrth.png)
Plugging in the expressions for
and
, we can find
. Finally, we can evaluate the curvature
at the point
by plugging in the appropriate value of

Explanation:
To find the curvature k of the curve at the point P, we can use the formula for curvature, which is given by:
![\[k = \frac{\lvert \mathbf{T}'(t) \rvert}{\lvert \mathbf{r}'(t) \rvert}\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/aazxv468vhppt0h3caxvqpeeg4bqi1hbow.png)
where:
is the vector-valued function that defines the curve, and
is the unit tangent vector.
The prime notation
denotes the derivative with respect to

Given the vector-valued function
we can first find the unit tangent vector
and its derivative
Then we can evaluate the curvature at the point
by plugging in the appropriate values of

The unit tangent vector
is given by:
![\[\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\lvert \mathbf{r}'(t) \rvert}\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/obgefrjjf7lvixjoqd05soyumfo0f1dcbo.png)
The derivative of
is:
![\[\mathbf{r}'(t) = e^t (-\sin(t) \mathbf{i} + \cos(t) \mathbf{j} + \sin(t) \mathbf{k}) + e^t \cos(t) \mathbf{i} + e^t \sin(t) \mathbf{j} + e^t \mathbf{k}\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/yuyk3b35wtp60qbmetia7hdqzz2vjw24jg.png)
![\[= e^t \cos(t) \mathbf{i} + e^t \sin(t) \mathbf{j} + (e^t - e^t \sin(t)) \mathbf{k}\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/adgfdh8lr1kdxf0jvtas8a21fczq304e3l.png)
The magnitude of
is:
![\[\lvert \mathbf{r}'(t) \rvert = √((e^t \cos(t))^2 + (e^t \sin(t))^2 + (e^t - e^t \sin(t))^2)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/y1wc8k1ehey0a056ou4e9p6c95gr7jua8m.png)
![\[= \sqrt{e^(2t) (\cos^2(t) + \sin^2(t)) + e^(2t) - 2e^(2t) \sin(t) + e^(2t) \sin^2(t)}\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/ch39sxt0123sidwi6yhjb2w8zi8bcw9zs6.png)
![\[= \sqrt{e^(2t) + e^(2t) - 2e^(2t) \sin(t) + e^(2t) \sin^2(t)}\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/swv4it1s4ucr448vchljdmxezkatek2dvo.png)
![\[= \sqrt{2e^(2t) - 2e^(2t) \sin(t)}\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/9rdynk8ksie6jqz7dm158ssp3t7lfrl867.png)
The unit tangent vector
is then:
![\[\mathbf{T}(t) = \frac{e^t \cos(t) \mathbf{i} + e^t \sin(t) \mathbf{j} + (e^t - e^t \sin(t)) \mathbf{k}}{\sqrt{2e^(2t) - 2e^(2t) \sin(t)}}\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/f34jjsklz9igcdi7e1p1fj45o0tx2pibyd.png)
The derivative of
is:
![\[\mathbf{T}'(t) = \frac{\mathbf{r}''(t) \lvert \mathbf{r}'(t) \rvert - \mathbf{r}'(t) \mathbf{r}''(t)}{(\lvert \mathbf{r}'(t) \rvert)^2}\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/bfj8tum617i6rmalb2ljwrios375vxxrth.png)
Plugging in the expressions for
, we can find
Finally, we can evaluate the curvature
at the point
by plugging in the appropriate value of
