32.8k views
2 votes
Find the curvature k of the curve at the point p. r(t) = et cos(t)i et sin(t)j et?, p(1, 0, 1)

1 Answer

3 votes

Final Answer:

The derivative of
\(\mathbf{T}(t)\) is:


\[\mathbf{T}'(t) = \frac{\mathbf{r}''(t) \lvert \mathbf{r}'(t) \rvert - \mathbf{r}'(t) \mathbf{r}''(t)}{(\lvert \mathbf{r}'(t) \rvert)^2}\]

Plugging in the expressions for
\(\mathbf{r}'(t)\) and
\(\mathbf{r}''(t)\), we can find
\(\mathbf{T}'(t)\). Finally, we can evaluate the curvature
\(k\) at the point
\(P(1, 0, 1)\) by plugging in the appropriate value of
\(t\).

Explanation:

To find the curvature k of the curve at the point P, we can use the formula for curvature, which is given by:


\[k = \frac{\lvert \mathbf{T}'(t) \rvert}{\lvert \mathbf{r}'(t) \rvert}\]

where:


\(\mathbf{r}(t)\) is the vector-valued function that defines the curve, and


\(\mathbf{T}(t)\) is the unit tangent vector.

The prime notation
\('\) denotes the derivative with respect to
\(t\).

Given the vector-valued function
\(\mathbf{r}(t) = e^t \cos(t) \mathbf{i} + e^t \sin(t) \mathbf{j} + e^t \mathbf{k}\), we can first find the unit tangent vector
\(\mathbf{T}(t)\) and its derivative
\(\mathbf{T}'(t)\). Then we can evaluate the curvature at the point
\(P(1, 0, 1)\) by plugging in the appropriate values of
\(t\).

The unit tangent vector
\(\mathbf{T}(t)\) is given by:


\[\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\lvert \mathbf{r}'(t) \rvert}\]

The derivative of
\(\mathbf{r}(t)\) is:


\[\mathbf{r}'(t) = e^t (-\sin(t) \mathbf{i} + \cos(t) \mathbf{j} + \sin(t) \mathbf{k}) + e^t \cos(t) \mathbf{i} + e^t \sin(t) \mathbf{j} + e^t \mathbf{k}\]


\[= e^t \cos(t) \mathbf{i} + e^t \sin(t) \mathbf{j} + (e^t - e^t \sin(t)) \mathbf{k}\]

The magnitude of
\(\mathbf{r}'(t)\) is:


\[\lvert \mathbf{r}'(t) \rvert = √((e^t \cos(t))^2 + (e^t \sin(t))^2 + (e^t - e^t \sin(t))^2)\]


\[= \sqrt{e^(2t) (\cos^2(t) + \sin^2(t)) + e^(2t) - 2e^(2t) \sin(t) + e^(2t) \sin^2(t)}\]


\[= \sqrt{e^(2t) + e^(2t) - 2e^(2t) \sin(t) + e^(2t) \sin^2(t)}\]


\[= \sqrt{2e^(2t) - 2e^(2t) \sin(t)}\]

The unit tangent vector
\(\mathbf{T}(t)\) is then:


\[\mathbf{T}(t) = \frac{e^t \cos(t) \mathbf{i} + e^t \sin(t) \mathbf{j} + (e^t - e^t \sin(t)) \mathbf{k}}{\sqrt{2e^(2t) - 2e^(2t) \sin(t)}}\]

The derivative of
\(\mathbf{T}(t)\) is:


\[\mathbf{T}'(t) = \frac{\mathbf{r}''(t) \lvert \mathbf{r}'(t) \rvert - \mathbf{r}'(t) \mathbf{r}''(t)}{(\lvert \mathbf{r}'(t) \rvert)^2}\]

Plugging in the expressions for
\(\mathbf{r}'(t)\) and \(\mathbf{r}''(t)\), we can find
\(\mathbf{T}'(t)\). Finally, we can evaluate the curvature
\(k\) at the point
\(P(1, 0, 1)\) by plugging in the appropriate value of
\(t\).

User David Holm
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.