Final answer:
Liam is correct. Congruence can be proven through reflection and rotation motions. Option 1: Liam only.
Step-by-step explanation:
In this case, both Liam and Tehya are correct. Liam's reasoning is valid because congruence can be proven through reflection over the y-axis. In rigid motions (also known as isometries), congruence can be proven through translations, rotations, and reflections. Tehya's statement involves a rotation, and rotations are rigid motions, but the orientation of the shapes after a 90° clockwise rotation is not the same. Therefore, Tehya's reasoning is not correct.
Liam's statement involves a reflection over the y-axis, and reflections are also rigid motions. If a reflection over the y-axis can map δabc to δefd, then they are congruent. Therefore, Liam is correct.