146k views
2 votes
Consider the function f left parenthesis x right parenthesis equals 1.3 left parenthesis 1.85 right parenthesis to the power of x. what is the y-intercept [a], asymptote [b], domain [c], and range [d]? is this a growth or decay function [e]?

User Kennyg
by
8.5k points

1 Answer

4 votes

Final answer:

The function f(x) = 1.3(1.85)^x has a y-intercept of 1.3, no horizontal asymptote, a domain of all real numbers, a range of all positive real numbers, and represents exponential growth.

Step-by-step explanation:

Interpreting the Function

For the function f(x) = 1.3(1.85)^x, we can find the following characteristics
Y-intercept: To find the y-intercept, let x = 0. This gives us f(0) = 1.3(1.85)^0 = 1.3. Therefore, the y-intercept is 1.3.

Asymptote: Since this is an exponential function and does not approach a horizontal line as x tends towards plus or minus infinity, there is no horizontal asymptote. However, the x-axis (y=0) is a horizontal asymptote as x approaches negative infinity if you consider the graph from a practical perspective, where the function values become insignificantly small.Domain: The domain of any exponential function is all real numbers, so here it is (-∞, ∞).Range: The range of this function is all positive real numbers, so (0, ∞).

Growth or Decay: Since the base of the exponent, 1.85, is greater than 1, this function represents exponential growth.



User Bakercp
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories