Answer: 2m^2n^3 x ( -5m^2 + 4n^2 -3n^2 )
Explanation:
ok, so just let me, uh, make this a little easier on my eyes lol:
-10m^4n^3+8m^2n^6-6m^2n^6 ----> (-10m^4)(n^3) + (8m^2)(n^6) - (6m^2)(n^6)
I just put in parentheses. nothing changed. just parentheses.
Since the leading coefficients, -10 , 8 , and 6 are multiples of two,
we can take out 2 from each... [-10/2 = 5 , 8/2 = 4 , 6/2 = 3 ]
= 2 x [ (-5m^4)(n^3) + (4m^2)(n^6) - (3m^2)(n^6) ]
Looking at it now...
we can take out m^2 from each... m^4 , m^2 , and m^2
m^2 [m^2 , 1 , 1]
since m^4 /m^2 = m^2 , m^2 /m^2 = 1 , m^2 /m^2 = 1
= 2(m^2) x [ (-5m^2)(n^3) + (4x1)(n^6) - (3x1)(n^6) ]
= 2(m^2) x [ (-5m^2)(n^3) + (4)(n^6) - (3)(n^6) ]
Finally, one more step...
we can take out n^3 from each term.... n^3 , n^6 , and n^6
n^3 [1 , n^2 , n^2] since n^3 /n^3 = 1 , n^6 /n^3 = n^2 , n^6 /n^3 = n^2
= 2(m^2)(n^3) [ (-5m^2)(1) + (4)(n^2) - (3)(n^2) ]
= 2m^2n^3 x [ (-5m^2) + (4n^2) - (3n^2) ]
= 2m^2n^3 x ( -5m^2 + 4n^2 -3n^2 )
ANSWER: 2m^2n^3 x ( -5m^2 + 4n^2 -3n^2 )
keep this parentheses. seriously.