512,790 views
40 votes
40 votes
Write the standard form equation for an

ellipse with vertices: (4, 10) and (-12, 10)
and foci: (2, 10) and (-10, 10)

User Geowar
by
3.3k points

1 Answer

11 votes
11 votes

Check the picture below, so the ellipse looks more or less like so


\textit{ellipse, horizontal major axis} \\\\ \cfrac{(x- h)^2}{ a^2}+\cfrac{(y- k)^2}{ b^2}=1 \qquad \begin{cases} center\ ( h, k)\\ vertices\ ( h\pm a, k)\\ c=\textit{distance from}\\ \qquad \textit{center to foci}\\ \qquad √( a ^2- b ^2) \end{cases} \\\\[-0.35em] ~\dotfill


\begin{cases} h=-4\\ k=10\\ a=8 \end{cases}\implies \cfrac{(x- (-4))^2}{ 8^2}+\cfrac{(y- 10)^2}{ b^2}=1\implies \cfrac{(x+4)^2}{ 8^2}+\cfrac{(y- 10)^2}{ b^2}=1 \\\\\\ \stackrel{\textit{we know that c = 6}}{6=√(8^2 - b^2)}\implies 6^2=8^2-b^2\implies b^2=8^2-6^2\implies \underline{b^2=28} \\\\\\ \cfrac{(x+4)^2}{ 8^2}+\cfrac{(y- 10)^2}{ b^2}=1\implies {\Large \begin{array}{llll} \cfrac{(x+4)^2}{ 64}+\cfrac{(y- 10)^2}{ 28}=1 \end{array}}

Write the standard form equation for an ellipse with vertices: (4, 10) and (-12, 10) and-example-1
User SSP
by
2.9k points